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ABSTRACT

Transcription factors are key regulatory elements that
control gene expression. Recognition of transcription
factor binding site (TFBS) motifs in the upstream
region of coexpressed genes is therefore critical
towards a true understanding of the regulations of
gene expression. The task of discovering eukaryotic
TFBSs remains a challenging problem. Here, we
demonstrate that evolutionary computation can be
used tosearch for TFBSs in upstream regions ofgenes
known to be coexpressed. Evolutionary computation
was used to search for TFBSs of genes regulated by
octamer-binding factor and nuclear factor kappa B.
The discovered binding sites included experimentally
determined known binding motifs as well as lists of
putative, previously unknown TFBSs. We believe that
this method to search nucleotide sequence informa-
tion efficiently for similar motifs will be useful for dis-
covering TFBSs that affect gene regulation.

INTRODUCTION

Microarray analysis of gene expression in different cells pro-
vides a means to identify genes that share similar expression
over time and/or biochemical treatment. These expression
patterns may be important biomarkers for cell type and/or
phenotypic behavior. Under the assumption that coexpressed
genes share coregulatory elements, examination of the
upstream regions for these genes may lead to the identification
of common regulatory mechanisms (1–7). These regulatory
signals may take the role of common transcription factor bind-
ing sites (TFBSs) that facilitate common gene expression.

Several computational methods for the discovery of TFBSs
have been offered in the literature (8). These can be divided
into two main approaches (9). The first approach makes use of
an exhaustive calculation to evaluate the frequency of occur-
rence of all possible sequences of length n (n-mers) using an
iterative process to update a nucleotide probability matrix. A
background sequence distribution (of n-mers found in a set of
non-coregulated genes) is used as a basis for comparison and
any n-mers that are more overly abundant than expected are
saved for further analysis as putative TFBSs (10–15). This

approach has several deficiencies, including a lack of allowing
flexible substitutions in the matching segments and the max-
imum length of n < 7 nt to achieve computation in reasonable
time. However, this method is guaranteed to find n-mers with
the highest Z-scores (a length-and-composition corrected meas-
ure of the similarity) as all possible length n < 7 nt are
examined exhaustively (9).

A second approach specifies the n-mer as a probability
matrix and utilizes an iterative algorithm, typically repres-
ented as an expectation maximization (16) or Gibbs sampling
procedure (9,17–22). These iterative methods can extend the
window size to lengths n > 8 nt but are susceptible to entrap-
ment in locally optimal solutions.

Both of these approaches are sensitive to the low signal-to-
noise ratio of the short TFBS n-mer sequences relative to the
length of the upstream region. Portions of the upstream region
that do not contain true TFBSs are considered as noise. When
applied to sequence data from higher eukaryotes, the signal-to-
noise ratio can be quite low due to the considerable length of
many intergenic regions. Improved models of the background
sequence distribution using higher-order Markov models (23)
to represent the intergenic sequences can assist in increasing
the signal-to-noise ratio presented to the discovery tool, but
these models are organism (or perhaps even gene cluster)
specific and need to be regenerated for every cluster that is
to be interrogated. N-th order Markov models that work par-
ticularly well for some sequences might work poorly on others.
In some cases, the number of correctly predicted motifs can
only be marginally affected by the complexity of the back-
ground model (23). An approach to motif identification that is
not organism-specific, does not require exhaustive calculation,
and can report back to the user putative TFBS in terms of a
nucleotide likelihood matrix or n-mer alignment could avoid
some of these pitfalls.

In this paper, we present a method to find similar nucleotide
motifs in upstream regions of previously clustered, coex-
pressed genes with motif length n > 7, where the output is
to be viewed either as a nucleotide likelihood matrix or as a
non-gapped multiple sequence alignment. The number of pos-
sible nucleotide likelihood matrices P increases as

P = L � xð ÞS
, 1

where S is the number of sequences to be interrogated, L is the
length of the sequences and x is the length of the window being
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used. A method to search this space and converge rapidly on
the set of optimal motifs is required. One way to approach the
task of de novo identification of conserved TFBSs is to search
for common sequence motifs across multiple upstream
sequences without pre-alignment using methods of evolution-
ary computation.

Evolutionary computation

Simulated evolution on a computer provides a method of
optimization suitable for a wide variety of complex problems
that may have multiple local optima, might vary with time or
have a low signal-to-noise ratio. Evolutionary computation
(EC) includes methods of genetic algorithms (GAs) (24,25),
evolutionary programming (EP) (26), evolution strategies
(ESs) (27) and other derivatives of these techniques, such
as genetic programming (GP) (28) and classifier systems
(29,30). Although each of these methods is slightly different,
they are broadly similar. All evolutionary algorithms (EAs)
maintain a population of contending solutions to be generated
(31–33). Each solution in the population is then scored with
respect to a measure of its worth or ‘fitness’. The solutions of
low fitness are most likely to be removed from the population
and not used in future generations than solutions of higher
fitness during a process of selection. Following selection, the
surviving solutions are used to generate new contending solu-
tions with random variation until the population size is re-
established. The process of variation and selection is iterated
for a specified number of generations or until the population
has converged into a solution of adequate worth. The methods
of EC differ on the choices of representation for solutions, the
manner in which variation is applied (e.g. recombination and/
or mutation operators), and the forms of selection that are used
[e.g. proportional selection, truncation selection and tourna-
ment selection (30)]. These algorithms have been shown to
generate robust performance across a wide range of functional
optimization problems (32,34,35).

More specifically, EC proceeds as follows:

(i) An initial population of solutions is generated. This can be
accomplished by selecting solutions at random and/or
by accepting solutions provided by other algorithms or
human operators. These ‘hints’ can be incorporated
directly into the search.

(ii) These parent solutions are scored in light of an objective
function.

(iii) The offspring solutions are generated from the parent
solutions. Various operators are used to generate off-
spring. Typical operators include (a) random variation
of individual components of a single parent solution
and (b) random recombination of multiple components
from two (or more) parent solutions.

(iv) The offspring solutions are scored in a manner similar to
that of their parents (see Step ii).

(v) Selection is applied to the collection of parents and off-
spring. According to a selected rule, a subset of this col-
lection is chosen to become parents of the next
generation. Possible selection rules include truncation
selection (i.e. eliminate solutions below a certain thresh-
old ranking in the population) and proportional selection
(i.e. the expected number of copies of each solutions is

directly proportional to their relative fitness) among many
others.

(vi) If the available time has expired or a solution of sufficient
worth has been discovered, then terminate the process;
else proceed to Step iii.

The speed of EC, in terms of rate of convergence to optimal
solutions, can be accelerated by optimizing a number of dif-
ferent evolutionary parameters, including (i) the population
size, (ii) the type and frequency of random variation imposed,
(iii) the degree of stringency of selection applied, (iv) the
evaluation function and (v) the representation specified.
The parameters act in concert to generate an overall system
performance.

DATABASE

The TRANSFAC (36) and COMPEL (37) databases were used
to identify two test cases each with multiple sequences and
experimentally derived TFBSs that could be used for the pur-
pose of algorithm evaluation. TRANSFAC provides informa-
tion for single transcription factors, providing information on
cofactors if these are known. COMPEL provides composite
regulatory elements containing two closely located TFBSs,
which are considered as minimal functional units in combi-
natorial transcription regulation. Thus, COMPEL can be con-
sidered as a subset of TRANSFAC with additional annotation
with respect to complexes of TFBSs and their function. COM-
PEL contains 178 experimentally validated composite ele-
ments from which we chose two transcription factors,
octamer-binding factor (Oct) and nuclear factor kappa B
(NF-kB) as test examples. These two test cases were chosen
because their binding mechanisms are well studied and many
known genes in the downstream regulatory pathways have
been verified experimentally. In addition, both of them repres-
ent families with multiple family members binding to slightly
different DNA motifs, thus increasing the difficulty of the
motif search. These two factors interact with other factors
of different regulatory roles, however, our goal was to
focus on one factor at a time as a first step toward the pre-
diction of putative TFBSs. In these two test cases, we selected
genes with known binding sites for Oct and NF-kB in their 1 kb
upstream region (Table 1). The test cases contained nucleotide
sequences representing the 1 kb region upstream to the trans-
cription start site (TSS) for each of these genes. Occasionally,
the binding sites occurred downstream of the TSSs and in these
cases the 1 kb region was shifted in the 30 direction 100 nt at a
time until the binding sites were within the 1 kb region. The
seven Oct motifs in Table 1 share a high degree of similarity
(92.9%) and these sequences can be represented by the con-
sensus motif ATGYAAAD. The nine NF-kB motifs in Table 1
were less conserved (68.8%) and can be loosely represented by
the consensus motif GDVNWDYY.

ALGORITHM

The code for EC was written in C++ for the evolution of
similar TFBS motif ‘windows’, one per each sequence in
each of the control examples. The sequence information con-
tained in the grouping of these windows was used to calculate

Nucleic Acids Research, 2004, Vol. 32, No. 13 3827



a nucleotide likelihood matrix. Fitness was measured with
respect to a basis matrix where both a metric for similarity
and a metric for complexity were used. Several strategies for
selection and variation were evaluated. The following sections
detail this process of TFBS discovery by EC.

Population initialization

For the purpose of this experimentation, we used a fixed TFBS
window size of w = 8. A single candidate solution represents a
set of windows placed (initially randomly) over the 1 kb
upstream sequences with only one window per sequence. A
user-defined number of P ‘parent’ solutions were created in
this manner. A user-defined number of O ‘offspring’ solutions
were created from these parent solutions using three methods
of variation described below. The resulting P and O solutions
were considered as one evolving ‘population’.

Variation operators

When generating offspring solutions from parent solutions, the
number of variation operators to apply was chosen at random
from the range [1, 3]. This range ensured a minimum number
of one and a maximum number of three variations relative to
the parent (under the assumption that more than this number of
mutations would be akin to developing a new individual at
random rather than making use of the information contained in
a parent solution). Three variation operators were developed:
Window Shift, Window Recombination and G+C% Slide. Each
of these variation operators was associated with a user-defined
probability of use in generating a new offspring solution.
These variation operators and their associated probabilities
of use are outlined below. These probabilities were established
through iterative testing and evaluation using 10 different
settings with respect to the known TFBSs information.
Although there is no guarantee that these same settings will
work over all examples, they do work well for these test cases.
Further refinement and testing of these settings on additional
examples is the subject of further investigation.

Each time a variation operator was required, the choice on
the type of variation was made with respect to the probabilities
associated with the frequency of use for each variation type,
defined by the user. The chosen variation operator was applied
and if the number of variations to apply was >1, this process
was repeated up to a user-defined maximum of three times to
generate an offspring solution.

Variation operator #1—Window Shift

When generating an offspring solution from a parent solution,
one window in the parent solution was chosen uniformly at
random for modification. This window was moved either to the
left or to the right at random with equal probability. Following
a decision of a direction, a choice of movement distance was
chosen at random from [1, N], where N represents the max-
imum number of nucleotides in that direction. For example,
given a window of 8 nt placed at the 50 end of a 1 kb sequence,
the remaining sequence is represented by Nmax = 992 nt (total
sequence length � window length).

Variation operator #2—G+C% Slide

The G+C% for all upstream sequences was calculated using
a sliding window of length 8 nt. A single window from a
parent solution was chosen uniformly at random for mod-
ification. For the remaining windows in the parent solution,
the average G+C% was calculated. A percentage similarity
to this average was calculated for all possible window posi-
tions in the full 1000 nt sequence for the window being
modified. Locations of window positions with G+C% simi-
larity equal to or greater than a user-defined threshold per-
centage similarity (for instance >80%) were stored. These
positions, representing regions in the sequence that most
closely resembled the average G+C% content of the remain-
ing windows in the parent solution, provided the highest
potential for increased similarity in the resulting offspring
solution. From this set of possible window placements, a
new location for the window was chosen with equal prob-
ability for the offspring solution.

Table 1. Genes with experimentally validated Oct or NF-kB binding sites

Transcription factor Gene name COMPEL entry Species Position Strand Sequence motif

Oct U2 small nuclear RNA C00039 Homo sapiens �230 to �214 (+) ATGCAAAT
Oct Unknown protein C00043 Mouse mammary tumor virus �89 to �49 (+) ATGTAAAT
Oct Surface antigen C00048 Human hepatitis B virus �86 to �51 (�) ATGTAAAT
Oct Immunoglobulin heavy chain C00049 Mus musculus �116 to �98 (+) ATGCAAAT
Oct Immunoglobulin heavy chain C00050 Mus hortulans �68 to �48 (+) ATGCAAAG
Oct Interleukin-2 C00158 M.musculus �86 to �71 (+) ATGTAAAA
Oct Interleukin-3 C00169 H.sapiens 185 to 206 (+) ATGCAAAT
NF-kB ELAM-1 C00097 H.sapiens �154 to �84 (+) GGGGATTT
NF-kB Interferon-beta C00099 H.sapiens �98 to �53 (+) GGGAAATT
NF-kB Serum amyloid A2 C00100 H.sapiens �179 to �82 (+) GGACTTTC
NF-kB Serum amyloid A1 C00101 Rattus norvegicus �117 to �73 (�) GACTTTCC
NF-kB Interleukin-6 C00152 H.sapiens �158 to �63 (+) GGATTTTC
NF-kB Serum amyloid A3 C00153 M.musculus �166 to �67 (�) GAAATGCC
NF-kB ICAM-1 C00155 H.sapiens �199 to �178 (�) GAAATTCC
NF-kB GM–CSF C00156 M.musculus �91 to �47 (+) GAAATTCC
NF-kB Interleukin-2 C00165 H.sapiens �167 to �142 (�) GTAGTTCC

For each listing, the COMPEL database number ‘(C00###)’ is provided, as well as binding site sequence motif. The consensus sequence for Oct is ATGYAAAD. The
consensus sequence for NF-kB is GDVNWDYY.
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Variation operator #3—Window Recombination

With the Window Recombination operator (Figure 1), when
generating an offspring solution from a parent solution (P1), a
second parent (P2) was chosen at random from the population.
A randomly chosen number of points of recombination r were
selected from the range [1, x � 1], where x is the number of
windows representing an individual (for Oct, x = 7 and for NF-
kB, x = 9). The condition of one point of recombination was
considered as ‘one-point crossover’. The condition of more
than one point of recombination was considered as ‘multipoint
crossover’. The placement of r recombination points was cho-
sen at random with equal probability at each position in the set
of sequences. In the case of multipoint crossover, the place-
ment of r recombination points was made such that no two
points of recombination shared an identical location in the set
of sequences. Following exchange of sequences about the
point(s) of recombination, two offspring solutions O1 and
O2 were generated. One of these two offspring solutions
was chosen at random with equal probability to be included
in the resulting population. The other offspring was deleted. It
should be noted that this operator only serves to shuffle the
grouping of motifs rather than alter the sequences of motifs.

Fitness evaluation

Each member of the population was scored with respect to two
criteria: overall similarity (S) and overall complexity (K ). The
objective of this process was to maximize the similarity of the

sequence motifs found within each window while avoiding
saturation of low complexity solutions. Initial investigations
using only the similarity criteria resulted in rapid entrapment
of the algorithm at solutions of very low complexity with very
high similarity. The complexity term was added to counteract
this process.

Calculation of similarity

Given the windows and their respective sequences contained
within each individual, a nucleotide likelihood matrix was
derived using the normalized frequency of A, T, G and C at
each position over the range [0, 1]. Each column of the nucleo-
tide likelihood matrix was compared with respect to the basis
matrix that was closest to the nucleotide of highest frequency
of occurrence within that column (Figure 2). The summed
absolute value of the difference between these columns for
the 4 nt represents the value of each column. The subtraction
of this value from 1 provided a similarity score to be max-
imized. The sum of similarity scores over all columns repre-
sented the total similarity component (S) for each individual.

Calculation of complexity

Compositional complexity (K ) of a window of length w can be
calculated using the equation

K =
1

w logN w!=
Q

ni!ð Þ , 2

Figure 1. Window recombination. Each solution is represented by a set of sequences (depicted here as sequence 1–7) each with a COMPEL database identifier
(C00###), starting and ending indices, and nucleotide sequence. Two parents (P1 and P2) are selected at random from the population of solutions. A point of crossover
is chosen at random (in this case between sequences 4 and 5 as denoted by an ·). At this point of crossover, information is exchanged between parent solutions to
generate two new offspring solutions (O1 and O2). One of these two offspring solutions is chosen at random with equal probability to be included in the resulting
population as a new solution, while the other is discarded.
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where n = 4 for DNA sequences, ni is the number of nucleo-
tides of type i, where i 2 fA, T, C, G}, for the w-mer window
(38). This formula was used to compute compositional com-
plexity for all windows in an individual solution. The average
compositional complexity for all windows represented the
total complexity score for each individual solution.

Total fitness

The total fitness (F) of each individual was calculated as:

F = w1 Sð Þ + w2 Kð Þ, 3

where the weights w1 and w2 were user-defined and fixed
during the evolution. These weights were used to adjust the
importance of these two terms in relation to fitness. The values
for w1 and w2 were adjusted following a series of experiments
on the control examples such that both control examples could
be recapitulated.

Selection

Before using a method of selection, the population of solutions
is interrogated for duplicate solutions by means of a direct
pairwise comparison for both sequence information and
positional indices. It is important to minimize the number

of duplicate solutions during the evolutionary search to
avoid premature stagnation on local optima and to maintain
a large amount of variance in the population for best coverage
of the response surface. There are several ways to increase
population variance in the evolutionary optimization, and we
have included one such approach with this algorithm. Upon
discovery of a duplicate solution, one of the duplicates is given
an artificially low fitness score. This artificial low-fitness score
guarantees the elimination during elitist selection. When using
tournament selection, duplicate solutions with low fitness are
excluded from the tournament competition and eliminated
from the population (see below).

Based on the fitness scores, a mechanism of selection (30)
determines which individuals from the current population will
be removed. Under an elitist selection approach, all indivi-
duals in the population are ranked with respect to fitness and
the worst O individuals are discarded leaving in the remaining
P individuals to serve as parents for the next generation. Under
a tournament selection approach (30), each individual ‘com-
petes’ with a user-defined number of randomly chosen other
individuals in the same population. ‘Competition’ in this
regard is a simple comparison of fitness. Each time the first
individual’s fitness is higher than (or equal to) the competitor’s
fitness, the first individual receives a ‘win’. The number of

Σ

Σ

Σ

Σ

Figure 2. Calculation of similarity. Given a set of windows of length 4, a nucleotide likelihood matrix is calculated. Each column in the nucleotide likelihood matrix is
then scored for similarity with respect to a basis matrix representing the complete conservation of the most prominent nucleotide. The first column of the nucleotide
likelihood matrix (all As) is compared to the case of all As from the basis matrix, and the sum (�) of the absolute values in the subtraction matrix is calculated (in this
case, � = 0). A difference of 1 minus this sum equals 1.0, for perfect similarity (all As). The second column of the nucleotide likelihood matrix (0.5 C, 0.5 G) is
compared to either the C or the G basis matrix (in this case C was chosen at random). This process is iterated over all columns and the final summation of column scores
(in this case 1.0) reflects the worth of the similarity component for this individual solution in the population.
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wins is recorded for all competitions and this process is iter-
ated over all members of the population. All individuals are
then ranked with respect to the number of wins during the
tournament, rather than simply their original fitness values.
Selection is used to remove the lower O individuals from this
ranked list. In the case of a tie in the number of wins, those
specific individuals are re-ranked by fitness before selection.
After selection, the P remaining individuals are saved to serve
as parents for the next generation of solutions.

Elitism guarantees that at each generation the solution with
the best fitness is retained in the population. Tournament selec-
tion does not guarantee that at each generation the best solu-
tion is retained in the population, which might appear
counterproductive as an optimization process. However, this
selective method allows the solutions of low fitness to be
retained for multiple generations. Such a strategy can avoid
entrapment in the local optima by providing access to unusual
solutions that may lead to more fertile portions of the fitness
landscape.

Parallelization

To create an environment to test the utility of parallelization of
the evolutionary procedure for this problem, an ‘island model’
was developed internal to each run of the EA. Within the
settings file, a user-defined number of parallel ‘islands’ can
be established as can the desired number of generations each
island performs evolution in the isolation. After isolation, the
best solutions from each of the islands can be pooled and the
islands can be ‘re-populated’ with either the best solutions
prior to pooling or the best solutions resulting from pooling
(or some combination thereof ). The amount and interval of
island communications were defined by the user. This sharing
of information can facilitate escape from local optima and
improve the overall rate of convergence but this performance
improvement is not guaranteed (39).

Extinction

The methods of simulated extinction coupled with the methods
of standard EC can provide increased convergence rates on
highly multimodal fitness landscapes (40–42). In this method,
‘extinction’ events are applied to the population during evolu-
tion to remove a percentage of the population generally with-
out respect (or with only minor respect) to fitness. A large
extinction event removes virtually every individual from the
population and restarts evolution with randomly derived
solutions or solutions derived from the small remainder of
individuals.

Given that the context of the TFBS discovery problem pre-
sents a rugged landscape with many local optima; through
early experimentation, we observed that the islands were
becoming entrapped in local optima despite methods to main-
tain diversity in the population. These solutions were quite
reasonable in terms of their quality and it was to our advantage
to capture as many of these locally optimal solutions and
explore their relative worth at the end of the evolutionary
process. To do this, we implemented a variant of the extinction
method that monitors the convergence for each island. When
the population stagnated for a user-defined period of genera-
tions, the best result was saved and the population was
restarted at random. This provides additional opportunity

for multiple sampling of the fitness landscape while at the
same time saving the best solutions discovered by previous
evolutionary paths. Thus, the output of each island contained a
listing of the best local optima discovered as well as an output
from the final generation of evolution.

Termination

Following the final generation of evolution, a user-defined
number of ‘best’ solutions were written to file for further
investigation by the user. To generate this list, the results
from the final generation of each island evolution are saved
to file. This list, in combination with the list of all best solu-
tions discovered via the extinction process described above,
was pooled, ranked by fitness, and any duplicates were elimi-
nated. A user-defined number of best final solutions were
reported to file for future analysis.

Program implementation

For the experiments presented here, unless otherwise stated,
elitist selection, uniform distribution for the number of muta-
tions, a population of 15 parents and 100 offspring for 500
generations of evolution were used to discover similar motifs
of window length 8 nt. The evolution was performed on an
Intel Pentium III, 450 MHz, 256 MB RAM computers operat-
ing either Linux O/S or Windows 2000 O/S. The approach
outlined above operates in O(n) computational time where n is
the problem size.

DISCOVERY OF TFBS

Calculation of G+C% for Oct and NF-kB sequences

In order to use the G+C% Window Slide variation operator,
G+C% were calculated over all 1 kb upstream sequences and
were used on the basis of average G+C% calculation and for
position of new windows. Calculation of the G+C% for the 1 kb
region was made by sliding a window of length 8 nt over the
sequences and reporting the window G+C% relative to the
position of the first nucleotide in the window. Thus, the 1 kb
sequence was transformed into a sequence of length 992 in
terms of G+C%.

These values showed considerable variation within each
sequence and between sequences. Some sequences, such as
Oct C00043, showed a spike in high G+C% within 200 nt of
TSS. Other sequences such as NF-kB C00165 appeared to
have low G+C% throughout the upstream region. When aver-
aged together, there appeared to be a slight increase in G+C%
over all Oct sequences and no major difference in G+C% over
all NF-kB sequences. The small window size of 8 nt provides a
highly irregular representation of G+C% and hence the win-
dow size might affect the utility of the G+C% Window Slide
operator.

Putative Oct TFBSs

Initial experimentation investigated the proper tuning of w1

and w2 associated with the fitness function terms. Weights of
w1 = 0.7 and w2 = 0.3 generated results that placed the known
Oct TFBSs as solution #1 in the resulting top 100 solutions
(Table 2), with other variations of the known Oct TFBSs
occurring throughout the top 100 solutions. The top 100
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solutions were manually grouped into clusters of similar TFBS
sequences rather than displayed in terms of fitness score.
Seven major clusters can be defined, with cluster #1 corre-
sponding to the known Oct TFBSs (Table 3). The other clus-
ters contain sequence motifs that are 100% conserved in other
upstream sequences or repeated within the same upstream
sequence (Table 3).

The motifs in the clusters shown in Table 3 can also be
arranged by COMPEL identifier to find sequences that contain
multiple versions of a similar putative TFBSs with slight altera-
tion. For instance, sequence C00049 in cluster 1 contains three
motifs that match the known Oct-binding site, the first was
considered as a control example (ATGCAAAT) and the other
two (ATGCACAT) differ by only one nucleotide. Other
sequences such as C00039 have only one representative in
cluster1 (thepreviouslyknownOct-binding siteATGCAAAT).

Within 50 generations, the evolutionary process was able to
quickly converge on useful solutions. Repeated resampling
with either restarted evolutionary runs or via extinction assist
in capturing information from many local optima.

Putative NF-kB TFBSs

When the same settings (w1 = 0.7 and w2 = 0.3) were used to
generate the NF-kB results, the resulting output did not
contain the known NF-kB solution (data not shown), which

demonstrates that the requirement for optimal tuning of these
parameters relative to as many known TFBSs as possible.
Additional tuning of the fitness function weights for both
NF-kB and Oct provided satisfactory results on both control
sets with w1 = 0.65 and w2 = 0.35. Using these settings, known
solutions for both Oct and NF-kB were discovered in the top
100 solutions resulting from evolution; however, none of the
known solution was considered ‘best’.

The top 100 solutions for NF-kB by this weighting were
manually grouped into clusters in Table 4. Four major clusters
can be defined, with cluster #3 corresponding to the known
NF-kB TFBSs. The other clusters contain sequence motifs that
are 100% conserved in other upstream sequences or repeated
within the same upstream sequence.

Although not all known NF-kB TFBSs were identified using
this approach, the most similar core of sequences within this
TFBS family was discovered. It remains unclear if the other
sequences in cluster 3 are also in some manner involved with
NF-kB binding. A number of partially overlapping combina-
tions can be found that link clusters together (Table 5). These
combined windows of length 8 nt also demonstrate that the
potential utility of using smaller windows to build larger com-
binations of motifs which might be relevant as putative
TFBSs. Curiously, two of these overlapping regions occur
within sequence C00153 and are at a very similar distance
to the TSS relative to sequence C00152.

Using w1 = 0.65 and w2 = 0.35 with the Oct dataset places
the known Oct TFBSs as the second best solution of the top
100 solutions reported at the end of evolution (data not
shown). This demonstrates that it is possible to adjust the
weights for these parameters and still return the correct
TFBSs as well as other putative motifs.

DISCUSSION

The two control sets used in this research were chosen as
representatives from the COMPEL/TRANSFAC databases.

Table 2. Highest scoring solution using evolutionary

computation for the Oct sequence set

COMPEL entry Evolved motif

C00039 ATGCAAAT
C00043 ATGTAAAT
C00048 ATGTAAAT
C00049 ATGCAAAT
C00050 ATGCAAAG
C00158 ATGTAAAA
C00169 ATGCAAAT

This top solution contains the known TFBSs for all seven
upstream regions.

Table 3. List of identical motifs discovered searching the upstream regions of

genes that are known to be regulated by Oct

Cluster # COMPEL entry Motif

1 C00039, C00049, C00169 ATGCAAAT
C00049, C00049*, C00158 ATGCACAT
C00043, C00048 ATGTAAAT

2 C00039, C00050, C00169 TCCACAGA
C00049, C00158 TGCACATA

3 C00043, C00050 TTTCCATA
4 C00049, C00050 AGACATGT

C00043, C00158 AGACAGGT
5 C00049, C00043 CTTTTGGA

C00050, C00169 CTTCTGGA
C00039, C00169 CTTCTGCA
C00158, C00158* CATGTGCA

6 C00039, C00048 GTCAGAAG
C00043, C00050 TTCAGAAG
C00169, C00169* TCCAGAAA

7 C00050, C00158, C00048 CTCCACAG

The motifs in cluster #1 correspond to those for the known Oct TFBSs. *denotes
the COMPEL sequences with multiple repeats of identical motifs.

Table 4. List of identical motifs discovered searching the upstream regions of

genes that are known to be regulated by NF-kB

Cluster # COMPEL entry Motif

1 C00097, C00101, C00155 TTTCCCAG
2 C00097, C00099 CCTCTGTG

C00155, C00156 CCTCAGTG
3 C00155, C00165, C00099 GAAATTCC

C00156, C00152 GAGATTCC
4 C00165, C00156 CAGTCAGT

The motifs in cluster #3 correspond to those for the known NF-kB TFBSs.

Table 5. List of overlapping motifs coupled with known NF-kB TFBSs

Cluster # COMPEL entry Motif Combined motif

1 C00152 ATTCCAAG GAGATTCCAAG
3 C00152 GAGATTCC
2 C00153 CCTAACTG GAAAGTCCTAACTG
3 C00153 GAAAGTCC
4 C00153 CAGAAAGT CAGAAAGTCC
3 C00153 GAAAGTCC
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The high degree of sequence conservation found in the Oct
example made this a much easier task for automated TFBS
discovery. Thus, Oct was used for initial code development,
testing and refinement. This effort resulted in parameter set-
tings and variation techniques that could identify the Oct
sequences as the best of 100 top ranked solutions.

Initial performance using the Oct settings on the NF-kB
example resulted in solutions that did not look like NF-kB.
The weights on the fitness terms were adjusted such that one
weight settings could be used to discover both Oct and NF-kB.
It is clear that as expected, NF-kB presents a much more
difficult search problem due to the general lack of sequence
conservation in the binding motif. However, enough seq-
uence conservation was observed in a subset of the NF-kB
sequences to ‘pull in’ windows on other upstream regions with
a similar sequence motif to the NF-kB TFBSs. It remains to be
determined if other parameter settings, variation operators or
methods of selection could be used to find all of the known NF-
kB and list these as one of the top 100 solutions. However,
presently, the method can result in at least the identification of
a subset of known NF-kB motifs. Without such computational
assistance and guidance, the researcher is forced to experi-
mentally test for putative TFBSs at each upstream nucleotide
position. The computational approach described here reduces
the time and effort required for TFBS discovery by pointing the
researcher to areas of highest probability of TFBSs detection
for downstream experimental validation. The time required to
verify the top 20 or even 100 best results from the EA experi-
mentally is significantly lower than that of experimental
validation at each position without these hints. When applying
Equation 1 to the Oct 1 example, a space of 9.5 · 1020 possible
solutions is defined. The evolutionary approach above
required only 7.5 · 105 function evaluations to complete.
Thus, only 7.9 · 10�16 of the search space was interrogated
and yet correct solution was identified in <5 h.

The motifs in Tables 3 and 4 for both Oct and NF-kB were
separately concatenated and examined using the MatInspector
6.2.1 algorithm (43) and Matrix Family Library Version 3.1.2/
ALL vertebrates.lib (core: 0.70/maxtrix; sim: Optimized) to
identify any previously known TFBSs that correspond to these
different motifs. For the Oct motifs, six matches were discov-
ered including the known Oct TFBSs, two Oct TFBS variants,
as well as TFBSs for microphthalmia transcription factor
(MIT), PAR-type chicken vitellogenin promoter-binding pro-
tein and cut-like homeodomain protein (Table 6). Only one
match relative to NF-kB was discovered and that match cor-
responds to the known NF-kB TFBSs. These results indicate
that the known truths were discovered using the approach as
well as several other previously known TFBSs. In addition,
experimental evidence is required to validate the remaining
putative TFBSs from Table 6. The discovery of Oct and MIT
TFBS is interesting in that both transcription factors are known
to be involved in bone tissue. The MIT TFBS motif
CATGTGCA occurs in the sequence C00158, an upstream
region for Interleukin-2.

The problem of TFBS discovery with a fixed window length
of 8 nt presents a rugged fitness landscape with many local
optima. It is clear that the evolutionary process can rapidly
progress from randomly derived solutions of low fitness to
solutions of much higher fitness. However, it appears that
the EA is prone to entrapment in these local optima and

this reduces the speed of convergence on the global optimum.
However, for this problem, identification of locally optimal
solutions can present novel putative TFBSs that are yet to be
discovered. Capturing the information in all local optima is
perhaps just as important as capturing the globally optimal
solution. We designed this EA to capture these local optima by
monitoring periods of stagnation, copying the best results to
file and restarting the EA multiple times within a single run to
sample the space as much as possible in the allocated time.
This process of simulated extinction assisted in the discovery
of as many local optima as possible. Simulated parallelization
of the overall process also provides N-fold additional sam-
plings and an even greater probability that all locally optimal
solutions of sufficient worth have been discovered.

In general, EC showed several advantages over existing
methods on these two test cases. As mentioned above, pub-
lished methods such as word enumeration (1,11,15) and
position-specific weight matrix updating (9,18,21,22) have
several serious disadvantages. For example, one disadvantage
of the former method is that it does not allow mutation in the
‘words’, thus reducing the power to detect true TFBSs, most of
which show some degree of variation. Our approach allows
variation in the motif by using the measurement of a similarity
score. The position-specific weight matrix method also avoids
this pitfall, but relies on the accuracy of position-specific weight
matrices,whicharenotalwayseasy todefine.Ourapproachdoes
not rely on any pre-defined or estimated weight matrices. A
recent paper combining these two approaches (44) was shown
to be faster and more accurate than the previous methods.
However, this hybrid method relies heavily on a low-order
Markov model, which is more successful in recovering motifs
with uniform distribution of di- or tri-nucleotides than other
motifs. Our method avoids the above caveats and is capable
of recovering TFBSs in these two test cases. However, a detailed
investigation of performance on the additional control examples
is yet to be completed and is the subject of further research.

CONCLUSION

This research effort focused on the development and exam-
ination of the utility of EC for the discovery of known and

Table 6. TFBS identified using MatInspector for both Oct and NF-kB

Family/matrix Name Strand Core
sim.

Matrix
sim.

Sequence

OCT1.02 Octamer-binding
factor 1

(+) 1.000 0.854 ATGCacat

VBP.01 PAR-type chicken
vitellogenin
promoter-binding
protein

(�) 1.000 0.871 tTTACat

OCT1.02 Octamer-binding
factor 1

(+) 0.755 0.869 ATGTaaat

OCT1.04 Octamer-binding
factor 1

(�) 1.000 0.842 TATGgaaa

CDPCR3.01 Cut-like homeodomain
protein

(�) 1.000 0.762 tATGGa

MIT.01 MIT and TFE3 (+) 1.000 0.843 CATGtgca
NF-kB65.01 NF-kB (p65) (�) 0.804 0.876 ggaatTTC

Nucleotides in upper case denote the core sequence used by MatInspector.
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putative TFBS motifs in upstream regions of coexpressed
genes. In two examples, the EC approach was able to discover
the known solutions and provide additional putative TFBSs
that could be verified by computational and/or experimental
means. This method does not require exhaustive search of
windows and does not utilize a Gibbs sampling process. It
is not organism-specific and does not require a pre-alignment.
This effort demonstrates that the feasibility of the method for
TFBS discovery for longer sequence motif lengths and pro-
vides a framework for additional refinement and success.

PROGRAM AVAILABILITY

Please contact Dr Chen Su and Dr Gary Fogel for information
regarding program implementation and/or motif searches
using the code.
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